Search results for "Hermitian adjoint"

showing 6 items of 6 documents

Partial $\ast$-algebras of distributions

2005

The problem of multiplying elements of the conjugate dual of certain kind of commutative generalized Hilbert algebras, which are dense in the set of C ∞ -vectors of a self-adjoint operator, is considered in the framework of the so-called duality method. The multiplication is defined by identifying each distribution with a multiplication operator acting on the natural rigged Hilbert space. Certain spaces, that are an

AlgebraDistribution (number theory)Multiplication operatorHermitian adjointGeneral MathematicsOperator (physics)Rigged Hilbert spaceUnitary operatorCommutative propertySelf-adjoint operatorMathematicsPublications of the Research Institute for Mathematical Sciences
researchProduct

Commutators, C0-semigroups and resolvent estimates

2004

Abstract We study the existence and the continuity properties of the boundary values on the real axis of the resolvent of a self-adjoint operator H in the framework of the conjugate operator method initiated by Mourre. We allow the conjugate operator A to be the generator of a C 0 -semigroup (finer estimates require A to be maximal symmetric) and we consider situations where the first commutator [ H ,i A ] is not comparable to H . The applications include the spectral theory of zero mass quantum field models.

Spectral theoryC0- semigroupsSemigroupOperator (physics)Mathematical analysisSpectrum (functional analysis)Commutator (electric)Resolvent formalismMourre estimatelaw.inventionResolvent estimateslawHermitian adjointPositive commutatorsBoundary values of resolvent familiesConjugate operatorVirial theoremAnalysisMathematicsResolventJournal of Functional Analysis
researchProduct

Metric operators, generalized hermiticity and partial inner product spaces

2015

A quasi-Hermitian operator is an operator in a Hilbert space that is similar to its adjoint in some sense, via a metric operator, i.e., a strictly positive self-adjoint operator. Motivated by the recent developments of pseudo-Hermitian quantum mechanics, we analyze the structure of metric operators, bounded or unbounded, in a Hilbert space. We introduce several generalizations of the notion of similarity between operators and explore to what extent they preserve spectral properties. Next we consider canonical lattices of Hilbert spaces generated by unbounded metric operators. Since such lattices constitute the simplest case of a partial inner product space (PIP space), we can exploit the te…

Discrete mathematicsUnbounded operatorPure mathematicsHermitian adjointFinite-rank operatorOperator theoryCompact operatorOperator normCompact operator on Hilbert spaceMathematicsQuasinormal operator
researchProduct

Generation of Frames

2004

It is well known that, given a generic frame, there exists a unique frame operator which satisfies, together with its adjoint, a double operator inequality. In this paper we start considering the inverse problem, that is how to associate a frame to certain operators satisfying the same kind of inequality. The main motivation of our analysis is the possibility of using frame theory in the discussion of some aspects of the quantum time evolution, both for open and for closed physical systems.

Physics and Astronomy (miscellaneous)General MathematicsFrame (networking)Compact operatorTopologySIC-POVMAlgebraVon Neumann's theoremOperator (computer programming)Multiplication operatorHermitian adjointHilbert spaces quantum time evolutionFrameUnitary operatorSettore MAT/07 - Fisica MatematicaMathematicsInternational Journal of Theoretical Physics
researchProduct

Metric Operators, Generalized Hermiticity and Lattices of Hilbert Spaces

2015

Pseudo-Hermitian quantum mechanics (QM) is a recent, unconventional, approach to QM, based on the use of non-self-adjoint Hamiltonians, whose self-adjointness can be restored by changing the ambient Hilbert space, via a so-called metric operator. The PT-symmetric Hamiltonians are usually pseudo-Hermitian operators, a term introduced a long time ago by Dieudonné for characterizing those bounded operators A that satisfy a relation of the form GA = A G, where G is a metric operator, that is, a strictly positive self-adjoint operator. This chapter explores further the structure of unbounded metric operators, in particular, their incidence on similarity. It examines the notion of similarity betw…

Discrete mathematicsUnbounded operatorVon Neumann's theoremPure mathematicsMetric operators Hermiticity Pip-spacesSettore MAT/05 - Analisi MatematicaHermitian adjointNuclear operatorOperator theoryOperator normCompact operator on Hilbert spaceMathematicsQuasinormal operator
researchProduct

QUASI *-ALGEBRAS OF OPERATORS AND THEIR APPLICATIONS

1995

The main facts of the theory of quasi*-algebras of operators acting in a rigged Hilbert space are reviewed. The particular case where the rigged Hilbert space is generated by a self-adjoint operator in Hilbert space is examined in more details. A series of applications to quantum theories are discussed.

Discrete mathematicsHilbert manifoldHilbert spaceStatistical and Nonlinear PhysicsRigged Hilbert spaceOperator spaceCompact operator on Hilbert spaceAlgebraPOVMsymbols.namesakeOperator algebraHermitian adjointsymbolsMathematical PhysicsMathematicsReviews in Mathematical Physics
researchProduct